Меню Рубрики

Казеин минеральный состав состав и свойства. Химические свойства казеина. Скорость усвоения казеина

Пожалуй, каждый наверняка слышал о казеиновом протеине. Он является основным элементом . К сожалению, такой белковый продукт не всегда воспринимают серьёзно. А зря! Ведь казеин очень полезен, как для спортсменов, так и для обычных людей. Его основная особенность заключается в правильном употреблении белка.

В переводе с латинского языка, казеин означает сыр. По научному определению он трактуется как сложный белок, который содержится в молоке. Этот компонент входит в состав молока, которое используют практически все млекопитающие на земле. Основная часть его в молоке насчитывает 82%, при этом сыворотки в нем всего лишь 18%. Когда молоко прокисает, весь казеин переходит в осадок, который заключается в образовании творожной массы. Таким образом, можно с уверенностью говорить о том, что творог в большей части состоит именно из казеина.

Особенность данного продукта состоит в том, что для него характерна запасающая функция. Эта уникальная способность достигается его природным происхождением. Благодаря тому, что казеиновый протеин расщепляется в несколько раз дольше, чем обычный белок в сыворотке, в человеческий организм попадает необходимое количество аминокислот. Такие свойства казеина позволяют его активно использовать людям, занимающимся тяжелыми видами спорта, а так же тем, кто хочет избавиться от лишней массы тела.

В разных видах спорта чаще всего он применяется в виде мицелярного казеина. Это означает, что продукт состоит из взвешенных частиц. Когда продукт смешать с водой, то в результате образуется довольно густая консистенция. Ее очень легко употреблять и при этом не чувствуешь никакого дискомфорта и неприятного привкуса. Когда мицелярный казеин попадает в желудок, то человек ощущает большой прилив сил и полную сытость, которая будет ощущаться длительный промежуток времени.

Такой эффект достигается благодаря тому, что в 100% казеине на 100 грамм мицелярного продукта белка находится 88%, при этом 1,5% составляют жиры. Стоит отметить тот факт, что углеводы в казеиновом протеине не находятся! Такие уникальные особенности продукта дают возможность организму получать все важные аминокислоты. После приема казеина человек будет чувствовать себя сытым приблизительно 6-8 часов. Это время оказывает положительное влияние на мышечные ткани. Ведь они не только заметно увеличиваются в массе, но и не разрушаются между перерывами употребления еды.

Казеиновый протеин очень эффективно помогает сжигать жировые отложения и уменьшать чувство голода. Если активно заниматься физическими упражнениями и употреблять данный продукт, добиться желаемого результата будет очень просто.

Важно знать!

Протеин, который бы включал в себя 100% белков, не существует в природе. Максимум только 95%!.

Для набора массы мышц такого рода протеин играет не последнюю роль. Он обладает антикатаболическим свойством.

Не рекомендуется использовать казеин до тренировки или после нее. Результатов, таким образом, не достигнешь. Ведь в период физической нагрузки организму нужны белки, которые имеют способность быстро усваиваться. Из этого следует, что употреблять данный продукт необходимо только перед сном, в количестве 40 грамм.

Для сбрасывания массы тела принимают 2-4 раза за сутки по 20-30 грамм, а та же перед сном. В данной ситуации он выполняет роль насыщения и сохранения мышц.

Самым лучшим образом казеин будет усваиваться в дозе 30-40 грамм. При этом его необходимо перемешивать с молоком. Когда продукт соединяют с жидкостью, то лучше всего перемешивать его при помощи шейкера или миксера.

Вкус напитка будет похож на творожный продукт. Если захочется поэкспериментировать, то в него можно добавлять какао, ванилин или сахар.

Не нужно забывать о том, что казеин учитывается в суточном рационе потребляемых калорий. Так на 100 грамм продукта, он будет иметь в себе 360 ккал.

Казеиновый протеин — Видео

Как правильно выбрать протеин Креатин и протеин, гейнер или протеин — что лучше выбрать? Протеин или ВСАА, что лучше? Как принимать протеин

Электрический заряд белков определяется ионизированными группами: -СОО - , NH 3 + и др. В водной среде карбоксильные и фосфатные группы диссоциируют (отдают протон) и переходят в форму анионов:

R–COOH R–COO - + H +

R–O–P = O R–O–P = O + 2H +

Аминогруппы, гуанидиновые группы присоединяют протоны и переходят в катионы:

R–NH 2 + H + R–NH 3 +

R–NH–C–NH 2 + H + R–NH–C–NH 2

От величины электрических зарядов на поверхности белков зависят: 1 – способность к гидратации; 2 – способность к передвижению в электрическом поле; 3 – кислый или основной характер белков; 4 – растворимость.

1. Для белков характерна очень высокая степень гидратации, т.е. связывание воды: 1 г казеина связывает 2-3,7 г и более воды. На поверхности электрически заряженной коллоидной частицы образуется мономолекулярный слой связанной воды вследствие полярности молекул воды. На этом слое адсорбируются другие частицы воды и т.д. По мере утолщения новые молекулы воды все слабее удерживаются белком и легко отделяются от него при повышении температуры, внесении электролитов и проч. Гидратная оболочка препятствует агрегации молекул белка в нативном состоянии и их коагуляции.

2. Величина заряда определяет подвижность белков в электрическом поле и является основой электрофоретического разделения и идентификации белков. Величина заряда белка зависит от рН. С понижением рН диссоциация СООН-групп замедляется и в дальнейшем прекращается полностью. В щелочной среде они, наоборот, полностью диссоциированы.

3. При рН свежего молока, равном 6,6-6,8, казеин несёт и положительные, и отрицательные заряды, с преобладанием отрицательных. То есть суммарный заряд на поверхности казеина отрицателен.

4. Если постепенно снижать рН, то ионы Н + будут связываться заряженными СОО - -группами с образованием незаряженных карбоксильных групп, т.е. уменьшается величина отрицательного заряда. При определенном значении рН (4,6-4,7) количество положительных зарядов на поверхности частиц казеина будет равно количеству отрицательных. В этой точке, которая называется изоэлектрической (pI) , белки теряют электрофоретическую подвижность, снижается степень гидратации и, следовательно, стабильность, т.е. казеин коагулирует. Сывороточные белки при этом остаются в растворе.



На растворимость белков также влияет концентрация солей в смеси:

При небольшой концентрации электролита растворимость повышается;

Очень высокие концентрации солей лишают белки гидратной оболочки и они выпадают в осадок (высаливание) (обратимый процесс).

Спирт и ацетон также действуют как водоотнимающие вещества, причем необратимо. Действие усиливается, когда белок находится в неустойчивой форме (алкогольная проба определения термоустойчивости молока).

Сывороточные белки – это белки молока, остающиеся в сыворотке после осаждения казеина из сырого молока при рН 4,6 и температуре 20°С. Они составляют 15-22% всех белков молока. Так же как и казеин не являются гомогенными, а состоят из нескольких фракций, главные из которых β-лактоглобулин (АВСDD 2), α-лактальбумин (АВ), альбумин сыворотки крови, иммуноглобулины, компоненты протеозопептонной фракции . Кроме того, в сыворотке содержатся лактоферрин, трансферрин, ферменты, гормоны и др. минорные компоненты.

Сывороточные белки содержат больше незаменимых аминокислот, чем казеин, поэтому более полноценны и их необходимо использовать на пищевые цели.

Некоторые свойства сывороточных белков проявляются в ходе различных технологических процессов и оказывают влияние на качество продуктов.

Важнейшими технологическими свойствами сывороточных белков молока является их высокая влагоудерживающая способность и термолабильность, т.е. их денатурация при нагревании (95°С в течение 20 мин). Полипептидные цепи сывороточных белков имеют α-спиралевидную конфигурацию и высокое содержание S-содержащих аминокислот. При нагревании происходит разрыв водородных связей и побочных валентных связей α-спирали; полипептидные цепи развертываются. Между молекулами сывороточных белков происходит формирование новых водородных связей и дисульфидных мостиков, что ведет к тепловой коагуляции, при этом сывороточные белки превращаются в очень мелкие хлопья, которые в пастеризаторе осаждаются вместе с Са 3 (РО 4) 2 в виде молочного камня или оседают на казеиновых частицах, блокируя их активную поверхность. Тепловая обработка ведет также к реакции между α-лактальбумином и β-лактоглобулином.

β-лактоглобулин – основной сывороточный белок, содержит свободные SH-группы, составляет 7-12% общего количества белков молока.

Денатурированный при пастеризации β-лактоглобулин образует комплексы с æ-казеином и осаждается вместе с ним при кислотной и сычужной коагуляции казеина. Образование комплекса β-лактоглобулин - æ-казеин значительно ухудшает атаку æ-казеина сычужным ферментом и снижает термоустойчивость мицелл казеина.

α-лактальбумин составляет 2-5% общего количества белков молока, тонкодиспергирован; не коагулирует в изоэлектрической точке (рН 4,2-4,5), т.к. сильно гидратирован; не свертывается сычужным ферментом; термостабилен из-за большого количества S-S-связей; играет важную роль в синтезе лактозы.

Альбумин сыворотки крови (0,7-1,5%) поступает в молоко из крови. В маститном молоке этой фракции много.

Иммуноглобулины (Иг) выполняют функцию антител (агглютинина), поэтому в обычном молоке их мало (1,9-3,3% общего количества белков), а в молозиве они составляют основную массу (до 90%) сывороточных белков. Очень чувствительны к нагреванию.

Протеозо-пептоны – наиболее термостабильная часть сывороточных белков. Составляют 2-6% всех белков молока. Не осаждаются при 95-100°С в течение 20 мин и подкислении до рН 4,6; осаждаются 12%-ной трихлоруксусной кислотой.

Минорные белки :

– лактоферрин (красный железо-связывающий белок), гликопротеид, содержится в количестве 0,01-0,02%, обладает бактериостатическим действием на Е.coli;

– трансферрин аналогичен лактоферрину, но с другой последовательностью аминокислот.

1.3 Химические свойства казеина

Около 95% казеина находится в молоке в виде сравнительно крупных коллоидных частиц - мицелл - которые имеют рыхлую структуру, они сильно гидратированы.

В растворе казеин имеет ряд свободных функциональных групп, которые обуславливают его заряд, характер взаимодействия с Н 2 О (гидрофильность) и способность вступать в химические реакции.

Носителями отрицательных зарядов и кислых свойств казеина является β и γ-карбоксильные группы аспаргиновой и глютаминовой кислот, положительных зарядов и основных свойств - å-аминогрупп лизина, гуанидовые группы аргинина и имидазольные группы гистидина. При рН свежего молока (рН 6,6) казеин имеет отрицательный заряд: равенство положительных и отрицательных зарядов (изоэлектрическое состояние белка) наступает в кислой среде при рН 4,6-4,7; следовательно в составе казеина преобладают дикарбоновые кислоты, кроме того, отрицательный заряд и кислые свойства казеина усиливают гидроксильные группы фосфорной кислоты. Казеин принадлежит к фосфоропротеидам - в своем составе содержит Н 3 РО 4 (органический фосфор), присоединенную моноэфирной связью к остаткам серина.

Гидрофильные свойства зависят от структуры, заряда молекул, рН среды, концентрации в ней солей, а также других факторов.

Своими полярными группами и пептидными группировками главных цепей казеин связывает значительное количество Н 2 О - не более 2 ч. на 1 ч. белка, что имеет практическое значение, обеспечивает устойчивость частиц белка в сыром, пастеризованном и стерилизованном молоке; обеспечивает структурно-механические свойства (прочность, способность отделить сыворотку) кислотных и кислотно-сычужных сгустков, образующихся при выработке кисломолочных продуктов и сыра, т. к. в процессе высокотемпературной тепловой обработке молока денатурируется β-лактоглобулин взаимодействуя с казеином и свойства гидрофильные казеина усиливаются: обеспечивая влагоудерживающую и водосвязывающую способность сырной массы при созревании сыра, т. е. консистенция готового продукта.

Казеин – амфотерин. В молоке он имеет явно выраженные кислые свойства.

СООН СОО -

Его свободные карбоксильные группы дикарбоновых аминокислот и гидроксильные группы фосфорной кислоты взаимодействуя с ионами солей щелочных и щелочноземельных металлов (Na + , K + , Ca +2 , Mg +2) образуют казеинаты. Щелочные растворители в Н 2 О, щелочноземельные нерастворимы. Казеинат кальция и натрия имеют большое значение при производстве плавленых сыров, при котором часть казеината кальция превращается в пластичный эмульгирующий казеинат натрия, который все шире используется в качестве добавки при производстве пищевых продуктов.

Свободные аминогруппы казеина взаимодействуют с альдегидом, например с формальдегидом:


R − NH 2 + 2CH 2 O → R − N

Эту реакцию используют при определении белка в молоке методом формального титрования.

Взаимодействие свободных аминогрупп казеина (в первую очередь S-аминогрупп лизина) с альдегидными группами лактозы и глюкозы объясняется первая стадия реакции меланоидинообразования:


R - NH 2 + C – R R - N = CH - R + H 2 O

альдозиламин

Для практики молочной промышленности особый интерес представляет прежде всего способность казеина к коагуляции (осаждению). Коагуляцию можно осуществить с помощью кислот, ферментов (сычужного), гидроколлоидов (пектин).

В зависимости от вида осаждения различают: кислотный и сычужный казеин. Первый содержит мало кальция, так как ионы Н 2 выщелачивают его из казеинового комплекса, сычужный казеин - это смесь наоборот казеината кальция и он не растворяется в слабых щелочах в противоположность кислотному казеину. Различают два вида казеина, получаемого осаждением кислотами: кисломолочный творог и казеин-сырец. При получении кисломолочного творога кислота образуется в молоке биохимическим путем - культурами микроорганизмов, причем отделению казеина предшествует стадия гелеобразования. Казеин-сырец получают путем добавления молочной кислоты или минеральных кислот, выбор которых зависит от назначения казеина, так как под их воздействием структура осажденного казеина различна: молочнокислый казеин - рыхлый и зернистый, сернокислотный - зернистый и слегка сальный; соляно-кислый - вязкий и резинообразный. При осаждении образуются кальциевые соли применяемых кислот. Труднорастворимый в воде сульфат кальция нельзя полностью удалить при промывке казеина. Казеиновый комплекс довольно термоустойчив. Свежее нормальное молоко с рН 6,6 свертывается при температуре 150 о С - за несколько секунд, при температуре 130 о С более чем за 20 минут, при 100 о С - в течение нескольких часов, поэтому молоко можно стерилизовать.

С коагуляцией казеина связана его денатурация (свертывание), она появляется в виде хлопьев казеина, либо в виде геля. При этом хлопьеобразование получает название коагуляции, а гелеобразование - свертывание. Видимым макроскопическим изменениям предшествуют субмикроскопические изменения на поверхности отдельных мицелл казеина, они наступают при следующих условиях:

При сгущении молока - казеин мицеллы образует слабо связанные друг с другом частицы. В сгущенном молоке с сахаром этого не наблюдается;

При голодании - мицеллы распадаются на субмицеллы, шарообразная форма их деформируется;

При нагревании в автоклаве > 130 о С - происходит разрыв главных валентных связей и увеличивается содержание небелкового азота;

При сушке распылительной - форма мицелл сохраняется при контактном способе - форма их изменяется, что влияет на плохую растворимость молока;

При сублимационной сушке - изменение незначительны.

Во всех жидких молочных продуктах видимая денатурация казеина крайне нежелательна.

В молочной промышленности явление коагуляции казеина вместе с сывороточными белками получают копреципитаты, используют СаСl 2 , NH 2 и гидроокись кальция.

Все процессы денатурации казеина, кроме высаливания считаются необратимыми, но это верно только в том случае, если под обратимостью процессов понимается восстановление нативных третичной и вторичной структур белков молока. Практическое значение имеет обратимое поведение белков, когда они из осажденной формы могут переходить снова в коллоидно-дисперсное состояние. Сычужное свертывание в любом случае представляет собой необратимую денатурацию, так как при этом расщепляются главные валентные связи. Сычужные казеины не могут перейти вновь в первоначальную коллоидную форму. И наоборот, обратимость может способствовать гелеобразованию пара - Н-казеина сублимационной сушки при добавлении концентрированного раствора поваренной соли. Обратим также процесс образования мягкого геля, обладающего тиксотропными свойствами, в УВТ-молоке при комнатной температуре. На начальной стадии легкое встряхивание приводит к пептизации геля. Осаждение кислоты казеина - обратимый процесс. В результате добавления соответственного количества щелочи казеин в виде казеината снова переходит в коллоидный раствор. Хлопьеобразование казеина имеет также большое значение с точки зрения физиологии питания. Мягкий сгусток образуется при добавлении слабокислых компонентов, например, лимонной кислоты, или удалении части ионов кальция методом ионообмена, а также при предварительной обработке молока протеолептическими ферментами, т. к. такой сгусток образует в желудке тонкий мягкий сгусток.

Веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза. генетика клетка онтогенез гибрид Законы Г. Менделя В своих опытах по скрещиванию Мендель применял гибридологический метод. Используя этот метод, он изучал наследование по отдельным признакам, а не по всему комплексу, ...

Причем преобладают кислые. Количество отдельных групп аминокислот в белках зависит от зоотехнических факторов, что и обуславливает их физико-химический состав. Молоко по содержанию незаменимых аминокислот является полноценным. Состав незаменимых АК в некоторых белках % Аминокислоты Идеальный белок Казеин Сывороточные белки молока Белок яйца Белок пшеницы Белок...



В12 удовлетворяется за счет синтеза его микрофлорой желудочно-кишечного тракта. В молоке витамина В12 содержится около 0,4 мкг на 100 г (суточная потребность составляет 3 мкг). Молоко и молочные продукты покрывают более 20% суточной потребности человека в витамине В12 Аскорбиновая кислота (витамин С). Она участвует в окислительно-восстановительных процессах, происходящих в организме. ...



Частью содержится в цитоплазме клеток. Содержание РНК, как правило, в 5-10 раз больше, чем ДНК. Соотношение РНК/ДНК в клетках тем выше, чем интенсивнее в них синтез белка. Нуклеиновые кислоты обладают сильно выраженными кислотными свойствами и при физиологических значениях рН несут высокий отрицательный заряд. В связи с этим в клетках организмов они легко взаимодействуют с различными катионами и...